函数连续性的定义是什么?

网上科普有关“函数连续性的定义是什么?”话题很是火热,小编也是针对函数连续性的定义是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1.函数连续性的定义:?

设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0), 则称f(x)在点x0处连续。?

若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。

2.函数连续必须同时满足三个条件:

(1)函数在x0?处有定义;

(2)x-> x0时,limf(x)存在;

(3)x-> x0时,limf(x)=f(x0)。

则初等函数在其定义域内是连续的。

扩展资料

间断点的定义:

间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。

间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。

1.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。

2.跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。

3.无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。

4.振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。

可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

参考资料:

百度百科-连续函数

根据函数连续性的定义:对于域中的任意一个x0,在x0的域中存在

limf(x)=f(x0)(x->x0),

即当x0处函数的极限值等于该点的函数值时,该点的函数是连续的。如果函数在域中的每个点都是连续的,则函数在域中是连续的。

从图像的角度看,如果函数是连续的,图像就是一条连续的曲线。如果从某个点中断,则函数在该点不是连续的。

首先,函数应该在这一点上定义;其次,函数应该在这一点上有一个极限(即左极限应该等于右极限);最后,函数在这一点上的极限值必须等于函数在这一点上的极限值。如果这三点同时满足,我们可以说函数在这一点上是连续的。

关于“函数连续性的定义是什么?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

发表评论